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ABSTRACT
Objectives. To develop a neuro-fuzzy system to predict the presence of prostate cancer. Neuro-fuzzy
systems harness the power of two paradigms: fuzzy logic and artificial neural networks. We compared the
predictive accuracy of our neuro-fuzzy system with that obtained by total prostate-specific antigen (tPSA)
and percent free PSA (%fPSA).
Methods. The data from 1030 men (both outpatients and hospitalized patients) were used. All men had a
tPSA level of less than 20 ng/mL. Of the 1030 men, 195 (18.9%) had prostate cancer. A neuro-fuzzy system
was developed using the coactive neuro-fuzzy inference system model.
Results. The mean area under the receiver operating characteristic curve for the neuro-fuzzy system output
was 0.799 *= 0.029 (95% confidence interval 0.760 to 0.835), for tPSA, it was 0.724 = 0.032 (95%
confidence interval 0.681 to 0.765), and for %fPSA, 0.766 + 0.024 (95% confidence interval 0.725 to
0.804). Furthermore, pairwise comparison of the area under the curves evidenced differences among
%fPSA, tPSA, and neuro-fuzzy system’s output (tPSA versus neuro-fuzzy system’s output, P = 0.008; %fPSA
versus neuro-fuzzy system’s output, P = 0.032). The comparison at 95% sensitivity showed that the
neuro-fuzzy system had the best specificity (31.9%).
Conclusions. This study presented a neuro-fuzzy system based on both serum data (tPSA and %fPSA) and
clinical data (age) to enhance the performance of tPSA to discriminate prostate cancer. The predictive
accuracy of the neuro-fuzzy system was superior to that of tPSA and %fPSA. UROLOGY 68: 357-361,

2006. © 2006 Elsevier Inc.

Prostate cancer is the second most common
cause of cancer death among men in most in-
dustrialized countries.! Intracapsular prostate can-
cer is curable and can be detected by screening
with total prostate-specific antigen (tPSA).! Fur-
thermore, only 30% of men with an elevated serum
tPSA concentration (4 ng/mL or greater) have
prostate cancer on biopsy.!? Various techniques
such as PSA density and transition zone density
may enhance the accuracy of the PSA test. Mea-
surement of the percentage of free PSA (%fPSA) or
complex PSA of the total serum PSA concentration
has also been shown to reduce the false-positive
PSA results by 20% to 40%.3>* The probability of
prostate cancer can be estimated by logistic regres-
sion analysis>~7 and artificial neural networks
(ANNs),8° which can be trained to predict diag-
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nostic outcomes. However, none of those tools has
resolved the problem of low specificity for prostate
cancer diagnosis.

Where uncertainty exists such as in the medical
field, fuzzy logic could play an important role in
making decisions. Fuzzy logic is the science of rea-
soning, thinking, and inference that recognizes
and uses the real world phenomenon that every-
thing is a matter of degree. In the simplest terms,
fuzzy logic theory is an extension of binary theory
that does not use crisp definitions and distinc-
tions.'° Instead of assuming everything must be
defined crisply into black and white (binary view),
fuzzy logic is a method that captures and uses the
concept of fuzziness in a computationally effective
manner. This concept was developed 40 years ago
when Lotfti Zadeh (as referenced by Dubois and
Prade!® and Kuncheva and Steimann''), originally
an engineer and systems scientist, expressed the
concern that as the complexity of a system in-
creased, the information afforded by traditional
mathematical models rapidly declined. Using a
fuzzy approach, the transition between terms can
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TABLE 1.

Patient characteristics

Parameter All Controls Prostate Cancer P Value (t Test)
Patients (n) 1030 835 195

Age (yr) 67.7 (45-92.7) 67.89 (45-92.7) 67.18 (48.8-86.3) 0.99
tPSA (ng/mL) 5.54(0.12-19.9) 5.03(0.12-19.9) 7.89(1.2-19.8) <0.001
fPSA (ng/mL) 0.88 (0.033-7.88) 0.89 (0.03-6.14) 0.86 (0.24-7.8) 0.54
%fPSA 18.6 (3.27-65) 20.18 (4.05-65) 11.7 (3.26-44.5) <0.001
PSA density 0.137 (0.005-0.896) 0.121 (0.005-0.566) 0.22 (0.062-0.896) <0.001
Transition zone PSA density  0.249 (0.013-1.64) 0.23 (0.017-1.45) 0.44 (0.013-1.64) <0.001

KEy: tPSA = total prostate-specific antigen; fPSA = free PSA; %fPSA = percentage of free PSA.

Data presented as median, with range in parentheses.

100 -

80}

Sensitivity
()}
o

I
o

N
o

100-Specificity

FIGURE 1. Receiver operating characteristic curves for
neuro-fuzzy system (solid line), tPSA (dotted line), and
%fPSA (dashed line).

be gradual, and the binary, or all or none, options
become the extreme ends of a continuum. The
fuzzy view of the world was put into operation for
computational purposes through the use of the
fuzzy set.!213 Variables, variable terms, and defini-
tions can be thought of in terms of sets and set
theory. In traditional set theory, using the binary
view, something either belongs to a set or does not,
depending on whether it fits the definition for that
set. Thus, it has a degree of membership (w) to the
set either equal to 1 (u = 1) orequal to 0 (u = 0).
In fuzzy set theory, something can partially belong
to a set. A value for a variable might partially belong
to a set and have a degree of membership anywhere
between 0 and 1 (ie, 0 < w < 1) and thus could
partially belong to several sets with the total member-
ship equaling 1.1%1>

Neuro-fuzzy systems are fuzzy systems that use
ANN theory to determine their properties (fuzzy
sets and fuzzy rules) by processing data samples.
Neuro-fuzzy systems harness the power of the two
paradigms: fuzzy logic and ANNSs, by using the
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mathematical properties of ANNs in tuning rule-
based fuzzy systems that approximate the way hu-
mans process information. A specific approach in
neuro-fuzzy development is the neuro-fuzzy infer-
ence system, which has shown significant results in
modeling nonlinear functions. In a neuro-fuzzy in-
ference system, the membership function parame-
ters are extracted from a data set that describes the
system behavior. The neuro-fuzzy inference sys-
tem learns features in the data set and adjusts the
system parameters according to a given error cri-
terion.'>!* Successful implementations of the
neuro-fuzzy inference system in biomedical en-
gineering have been reported for classification
and data analysis.'o-!8

The aim of our study was to develop a neuro-
fuzzy system to predict the presence of prostate
cancer. We compared the predictive accuracy of
this neuro-fuzzy system with that obtained by tPSA
and %fPSA. To our knowledge, this is the first
study using a neuro-fuzzy system for prostate can-
cer diagnosis.

MATERIAL AND METHODS

We retrospectively reviewed from our database male pa-
tients (both outpatients and hospitalized patients) who under-
went tPSA and fPSA assay from January 2002 to September
2005. This population did not represent a screening popula-
tion, but patients with urologic symptoms referred to the urol-
ogy practice for treatment of a genitourinary disorder or for a
checkup. From January 2002 to August 2003, systematic sex-
tant biopsies using transrectal ultrasonography were per-
formed in patients with positive or doubtful digital rectal ex-
amination (DRE) findings, as well as in those with a tPSA level
greater than 4 ug/L and %fPSA less than 22%. From September
2003 to September 2005, systematic 12 or 14-core biopsies
were performed in patients with a tPSA level greater than
3 ug/L and %fPSA less than 22%. Serum was obtained before
any diagnostic procedure. Both tPSA and fPSA were assayed
using the chemiluminescent immunoassay Immulite (Diag-
nostic Products), according to the manufacturer’s instructions.
The assays are solid-phase, two-site, sequential chemilumines-
cent immunometric tests that are performed automatically on an
automated analyzer with a detection limit of 0.02 and 0.03 ug/L,
respectively, for fPSA and (PSA.

The inclusion criteria were age older than 45 years and no
history of prostate cancer. All men underwent a detailed clin-
ical examination that included DRE and serum tPSA and fPSA
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TABLE II.

Validation group: cutoff and specificity at 95% and 90% of sensitivity

Cutoff for 95% Sensitivity

Cutoff for 90% Sensitivity

AUC = SD (95% CI)

fPSA (ng/mL)
%fPSA

Logistic regression
Neuro-fuzzy system

3.2 (26% specificity)

29 (14% specificity)
0.0626 (24.7% specificity)
0.07 (31.9% specificity)

3.9 (35.5% specificity)

23.7 (30.9% specificity)

0.0973 (39.2% specificity)
0.13 (52% specificity)

0.724 = 0.032 (0.681-0.765)
0.766 = 0.024 (0.725-0.804)
0.783 = 0.030 (0.743-0.820)
0.799 = 0.029 (0.760-0.835)

Key: AUC = area under curve; CI = confidence interval; other abbreviations as in Table .

determinations. Patients were excluded from analysis because
of concomitant finasteride treatment, a tPSA level greater than
20 ng/mL, or recent urethral catheterization, which may dis-
tort the tPSA value. Patients who rejected a proposed prostatic
biopsy were excluded. All patients with prostate carcinoma were
diagnosed histopathologically. After applying these study inclu-
sion and exclusion criteria, our initial sample of 2850 patients
was decreased to 1030. All the men were white.

The 1030 men were randomly divided into four groups:
training group (n = 463 [45%]), cross-validation group (n =
52 [5%]), test group (n = 52 [5%]), and validation group (n =
463 [45%]).

A fuzzy neural network was developed using the coactive
neuro-fuzzy inference system model, which integrates adapt-
able fuzzy inputs with a modular neural network to approxi-
mate complex functions rapidly and accurately. The coactive
neuro-fuzzy inference system model optimizes the fuzzy rules
(membership function parameters) with back-propagation, so
human knowledge is not required.

The fuzzy control method used was the Takagi-Sugeno-
Kang, and each input was specified to consist of five bell-
shaped membership functions. The number of training epochs
was 1000.

Cross validation is a method for stopping network training.
This method monitors the error on an independent set of data
and stops training when this error begins to increase. This is
considered to be the point of best generalization. The best
weights of the network are automatically saved at the point at
which the cross-validation error is at its lowest point. When
testing the network, these best weights are loaded into the
network, after the testing set is fed into the network and the
network output is compared with the desired output. Data
from the training group were used to train the ANN, which
was composed of an input layer with three neurons (prepro-
cessed values of tPSA, %fPSA, and age), a hidden layer with
hidden neurons, and an output layer with one neuron repre-
senting the output value of the predictor, which is a measure
of the probability of prostate cancer. The predictive variables
were tPSA, %fPSA, and age; all variables were considered as
continuous variables.

This trained and tested neural network was validated with
the inputs of the last 463 cases (45%), so the obtained output
values were compared with the real presence or absence of
prostate cancer.

The software tool used to obtain the results presented in this
report can be found on our server: http://www.urologiaparma.
com/neurofuzzy. htm.

The ANN model was compared with a multivariate logistic
regression analysis of the parameters used as input variables to
the ANN. In the logistic model, the coefficients were deter-
mined from the training and test sets; the validation set was
used to verify the generalization of the regression. The forward
stepwise model was used. Age was excluded from the final
model when the forward selection procedure was applied. The
best fit of the logistic regression analysis models was tested by
the Hosmer-Lemeshow test.

The variables of the different groups were compared using
the t test, with P <0.05 considered significant. The receiver
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operating characteristic curve was generated by plotting sen-
sitivity versus 1 — specificity, and the area under the curve was
calculated and compared.

RESULTS

Table I lists the descriptive statistics of the 1030
patients. Their median age was 67.7 years (range
45 to 92), and 195 patients (18.9%) had prostate
cancer.

The mean area under the receiver operating char-
acteristic curve for the ANN output was 0.799 *
0.029 (95% confidence interval [CI] 0.760 to 0.835),
for logistic regression analysis, it was 0.783 = 0.030
(95% C10.743 t0 0.820), for tPSA was 0.724 £ 0.032
(95% CI 0.681 to 0.765), and for %fPSA was
0.766 = 0.024 (95% CI 0.725 to 0.804) (Fig. 1).
Furthermore, a comparison of the areas under the
curve evidenced differences among %fPSA, tPSA
and ANN output that were statistically significant
(tPSA versus ANN, P = 0.008; %fPSA versus ANN,
P = 0.032). No difference was found between the
area under the curve for logistic regression analysis
and %fPSA (P = 0.14).

Using the receiver operating characteristic anal-
ysis, the ANN output cutoff value for a best dis-
crimination between prostate cancer cases and
controls was 0.19, corresponding to 71.4% sensi-
tivity, 69.3% specificity, and a positive likelihood
ratio of 2.35. The value of 0.07 for ANN output
corresponded to 95% sensitivity and 31.9% speci-
ficity. The tPSA cutoff of 3.2 ng/mL corresponded
to 95% sensitivity and 26% specificity (Table II).
The specificity of %fPSA was the lowest at 90% and
95% sensitivity, because the evaluation of %fPSA
was done for all of the tPSA range and not only in
the tPSA gray zone (Table II).

COMMENT

The diagnostic tests currently used for early pros-
tate carcinoma detection are fraught with a consider-
able number of false-positive and false-negative re-
sults.1:'* The determination of %fPSA2°2! and the
concept of PSA density and PSA transition zone
density?? have been included in the diagnostic
workup for prostate carcinoma. However, none of
those tools has resolved the problem of low speci-
ficity for prostate cancer diagnosis.?> Several statis-
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tical methods such as Cox proportional hazards
and logistic regression analysis have been used to
study the probability of having prostate carcino-
ma,>%2* but ANNs have the ability to predict the
outcome for an individual patient in a way that is not
possible with conventional statistics.>* Recent studies
have evaluated the application of ANNs to the diag-
nosis of prostate carcinoma.?>2° Snow et al.® reported
the first results in 1994. Since then, several studies
have been performed using ANNs or conventional
algorithms to enhance the detection of prostatic
carcinoma.25-28 In 1998, Carlson et al.® introduced
a logistic regression model that included %fPSA,
tPSA, and patient age. They found an 11% increase in
specificity compared with the use of %{PSA alone
within the 4 to 20-ug/L tPSA range.® Virtanen et al.>*
used another logistic regression model and an ANN
incorporating %fPSA, tPSA, DRE status, and he-
redity factor at a tPSA level of 3 to 10 ug/L. The
results provided better diagnostic accuracy for
prostate cancer detection, with %PSA and DRE sta-
tus as the most powerful predictors. A large multi-
center evaluation of an ANN with five variables
(tPSA, %fPSA, patient age, prostate volume, and
DRE status) demonstrated an enhanced accuracy
of prostate cancer detection with a reduction in
unnecessary biopsies.?®

The proposed neuro-fuzzy system can be used
with a wide range of PSA (0 to 20 ng/mL). Another
advantage of this neuro-fuzzy system is the re-
duced number of input variables. It only requires
tPSA, %fPSA, and age. The absence of prostate vol-
ume offers greater use because an ultrasound scan
to measure the prostate volume is not necessary.
The main aim of our study, however, was to estab-
lish a clinically usable program for the individual
calculation of prostate cancer risk. Using a simple
ANN with limited input variables (tPSA, %fPSA,
and age), we demonstrated significantly better per-
formance for the neuro-fuzzy system output than
for tPSA and %fPSA in enhancing the specificity
and sensitivity.

CONCLUSIONS

This report presented a neuro-fuzzy system that
used both serum data (tPSA and %{PSA) and clin-
ical data (patient age) to enhance the performance
of tPSA to discriminate prostate cancer. The pre-
dictive accuracy of the neuro-fuzzy system was su-
perior to that of tPSA and %f{PSA. The proposed
neuro-fuzzy system combined the neural network
adaptive capabilities and the fuzzy logic qualitative
approach.
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